Calculations for Compressed Spring Washers (Reference)

Load and Stress Calculations of Curved Washer

Fig. 1 Curved Washer

Load

$$P = \frac{4K_1Et^3\delta}{D^2}$$
 (1)

Stress

$$S = \frac{1.5P}{K_1 t^2}$$
 (2)

P: Load(N)

S: Stress (N/mm²)

D: Diameter of outer periphery (mm)

d: Diameter of inner periphery (mm)

t: Plate thickness (mm)

 δ : Amount of deflection (mm)

E: Longitudinal elastic modulus (N/mm²) (Table 1)

K₁: Load correction coefficient [= 1 - d/D] (Table 2)

Table 1	Longitudinal	elastic modulus	of main	materials ((E)
---------	--------------	-----------------	---------	-------------	-----

Material	Longitudinal elastic modulus (N/mm²)	
Carbon spring steel	206000	
Stainless steel for spring	181000	

to diameter of outer periphery (d/D)

Notes

There are differences between the calculated and measured values for the formula of deflection and load. Substitution of conditions such as diameters of outer and inner peripheries gives a first-order equation of deflection and load which is plotted as a straight line. However, the actual load curve will not be a simple straight line but a curve.